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Preface

The first edition of this book was published in 2008 and has been adopted by numerous
universities around the globe for undergraduate microelectronics education. Following is
a detailed description of each chapter with my teaching and learning recommendations.

Coverage of Chapters The material in each chapter can be decomposed into three
categories: (1) essential concepts that the instructor should cover in the lecture, (2) essential
skills that the students must develop but cannot be covered in the lecture due to the limited
time, and (3) topics that prove useful but may be skipped according to the instructor’s
preference.1 Summarized below are overviews of the chapters showing which topics should
be covered in the classroom.

Chapter 1: Introduction to Microelectronics The objective of this chapter is to pro-
vide the “big picture” and make the students comfortable with analog and digital signals.
I spend about 30 to 45 minutes on Sections 1.1 and 1.2, leaving the remainder of the chapter
(Basic Concepts) for the teaching assistants to cover in a special evening session in the
first week.

Chapter 2: Basic Semiconductor Physics Providing the basics of semiconductor de-
vice physics, this chapter deliberately proceeds at a slow pace, examining concepts from
different angles and allowing the students to digest the material as they read on. A terse
language would shorten the chapter but require that the students reread the material
multiple times in their attempt to decipher the prose.

It is important to note, however, that the instructor’s pace in the classroom need not
be as slow as that of the chapter. The students are expected to read the details and the
examples on their own so as to strengthen their grasp of the material. The principal point
in this chapter is that we must study the physics of devices so as to construct circuit models
for them. In a quarter system, I cover the following concepts in the lecture: electrons
and holes; doping; drift and diffusion; pn junction in equilibrium and under forward and
reverse bias.

Chapter 3: Diode Models and Circuits This chapter serves four purposes: (1) make the
students comfortable with the pn junction as a nonlinear device; (2) introduce the concept
of linearizing a nonlinear model to simplify the analysis; (3) cover basic circuits with which
any electrical engineer must be familiar, e.g., rectifiers and limiters; and (4) develop the
skills necessary to analyze heavily-nonlinear circuits, e.g., where it is difficult to predict
which diode turns on at what input voltage. Of these, the first three are essential and
should be covered in the lecture, whereas the last depends on the instructor’s preference.
(I cover it in my lectures.) In the interest of time, I skip a number of sections in a quarter
system, e.g., voltage doublers and level shifters.

Chapter 4: Physics of Bipolar Transistors Beginning with the use of a voltage-
controlled current source in an amplifier, this chapter introduces the bipolar transistor

1Such topics are identified in the book by a footnote.

v
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as an extension of pn junctions and derives its small-signal model. As with Chapter 2, the
pace is relatively slow, but the lectures need not be. I cover structure and operation of
the bipolar transistor, a very simplified derivation of the exponential characteristic, and
transistor models, mentioning only briefly that saturation is undesirable. Since the T-model
of limited use in analysis and carries little intuition (especially for MOS devices), I have
excluded it in this book.

Chapter 5: Bipolar Amplifiers This is the longest chapter in the book, building the
foundation necessary for all subsequent work in electronics. Following a bottom-up
approach, this chapter establishes critical concepts such as input and output impedances,
biasing, and small-signal analysis.

While writing the book, I contemplated decomposing Chapter 5 into two chapters,
one on the above concepts and another on bipolar amplifier topologies, so that the lat-
ter could be skipped by instructors who prefer to continue with MOS circuits instead.
However, teaching the general concepts does require the use of transistors, making such
a decomposition difficult.

Chapter 5 proceeds slowly, reinforcing, step-by-step, the concept of synthesis and
exploring circuit topologies with the aid of “What if?” examples. As with Chapters 2 and
4, the instructor can move at a faster pace and leave much of the text for the students to
read on their own. In a quarter system, I cover all of the chapter, frequently emphasizing
the concepts illustrated in Figure 5.7 (the impedance seen looking into the base, emit-
ter, or collector). With about two (perhaps two and half) weeks allotted to this chapter,
the lectures must be precisely designed to ensure the main concepts are imparted in the
classroom.

Chapter 6: Physics of MOS Devices This chapter parallels Chapter 4, introducing the
MOSFET as a voltage-controlled current source and deriving its characteristics. Given
the limited time that we generally face in covering topics, I have included only a brief
discussion of the body effect and velocity saturation and neglected these phenomena for
the remainder of the book. I cover all of this chapter in our first course.

Chapter 7: CMOS Amplifiers Drawing extensively upon the foundation established in
Chapter 5, this chapter deals with MOS amplifiers but at a faster pace. I cover all of this
chapter in our first course.

Chapter 8: Operational Amplifier as a Black Box Dealing with op-amp-based cir-
cuits, this chapter is written such that it can be taught in almost any order with respect to
other chapters. My own preference is to cover this chapter after amplifier topologies have
been studied, so that the students have some bare understanding of the internal circuitry of
op amps and its gain limitations. Teaching this chapter near the end of the first course also
places op amps closer to differential amplifiers (Chapter 10), thus allowing the students to
appreciate the relevance of each. I cover all of this chapter in our first course.

Chapter 9: Cascodes and Current Mirrors This chapter serves as an important step
toward integrated circuit design. The study of cascodes and current mirrors here also
provides the necessary background for constructing differential pairs with active loads
or cascodes in Chapter 10. From this chapter on, bipolar and MOS circuits are covered
together and various similarities and contrasts between them are pointed out. In our second
microelectronics course, I cover all of the topics in this chapter in approximately two
weeks.
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Chapter 10: Differential Amplifiers This chapter deals with large-signal and small-
signal behavior of differential amplifiers. The students may wonder why we did not study
the large-signal behavior of various amplifiers in Chapters 5 and 7; so I explain that the
differential pair is a versatile circuit and is utilized in both regimes. I cover all of this chapter
in our second course.

Chapter 11: Frequency Response Beginning with a review of basic concepts such
as Bode’s rules, this chapter introduces the high-frequency model of transistors and ana-
lyzes the frequency response of basic amplifiers. I cover all of this chapter in our second
course.

Chapter 12: Feedback and Stability Most instructors agree the students find feed-
back to be the most difficult topic in undergraduate microelectronics. For this reason,
I have made great effort to create a step-by-step procedure for analyzing feedback cir-
cuits, especially where input and output loading effects must be taken into account. As with
Chapters 2 and 5, this chapter proceeds at a deliberately slow pace, allowing the students to
become comfortable with each concept and appreciate the points taught by each example.
I cover all of this chapter in our second course.

Chapter 13: Oscillators This new chapter deals with both discrete and integrated oscil-
lators. These circuits are both important in real-life applications and helpful in enhancing
the feedback concepts taught previously. This chapter can be comfortably covered in a
semester system.

Chapter 14: Output Stages and Power Amplifiers This chapter studies circuits that
deliver higher power levels than those considered in previous chapters. Topologies such
as push-pull stages and their limitations are analyzed. This chapter can be covered in a
semester system.

Chapter 15: Analog Filters This chapter provides a basic understanding of passive and
active filters, preparing the student for more advanced texts on the subject. This chapter
can also be comfortably covered in a semester system.

Chapter 16: Digital CMOS Circuits This chapter is written for microelectronics
courses that include an introduction to digital circuits as a preparation for subsequent
courses on the subject. Given the time constraints in quarter and semester systems, I have
excluded TTL and ECL circuits here.

Chapter 17: CMOS Amplifiers This chapter is written for courses that cover CMOS
circuits before bipolar circuits. As explained earlier, this chapter follows MOS device
physics and, in essence, is similar to Chapter 5 but deals with MOS counterparts.

Problem Sets In addition to numerous examples, each chapter offers a relatively large
problem set at the end. For each concept covered in the chapter, I begin with simple,
confidence-building problems and gradually raise the level of difficulty. Except for the
device physics chapters, all chapters also provide a set of design problems that encourage
students to work “in reverse” and select the bias and/or component values to satisfy certain
requirements.
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SPICE Some basic circuit theory courses may provide exposure to SPICE, but it is in the
first microelectronics course that the students can appreciate the importance of simulation
tools. Appendix A of this book introduces SPICE and teaches circuit simulation with the
aid of numerous examples. The objective is to master only a subset of SPICE commands
that allow simulation of most circuits at this level. Due to the limited lecture time, I ask
the teaching assistants to cover SPICE in a special evening session around the middle of
the quarter—just before I begin to assign SPICE problems.

Most chapters contain SPICE problems, but I prefer to introduce SPICE only in the
second half of the first course (toward the end of Chapter 5). This is for two reasons:
(1) the students must first develop their basic understanding and analytical skills, i.e., the
homeworks must exercise the fundamental concepts; and (2) the students appreciate the
utility of SPICE much better if the circuit contains a relatively large number of devices
(e.g., 5-10).

Homeworks and Exams In a quarter system, I assign four homeworks before the
midterm and four after. Mostly based on the problem sets in the book, the homeworks
contain moderate to difficult problems, thereby requiring that the students first go over
the easier problems in the book on their own.

The exam questions are typically “twisted” versions of the problems in the book. To
encourage the students to solve all of the problems at the end of each chapter, I tell them
that one of the problems in the book is given in the exam verbatim. The exams are open-
book, but I suggest to the students to summarize the important equations on one sheet of
paper.

Behzad Razavi
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Chapter 1
Introduction to Microelectronics

Over the past five decades, microelectronics has revolutionized our lives. While beyond
the realm of possibility a few decades ago, cellphones, digital cameras, laptop computers,
and many other electronic products have now become an integral part of our daily affairs.

Learning microelectronics can be fun. As we learn how each device operates, how
devices comprise circuits that perform interesting and useful functions, and how circuits
form sophisticated systems, we begin to see the beauty of microelectronics and appreciate
the reasons for its explosive growth.

This chapter gives an overview of microelectronics so as to provide a context for the
material presented in this book. We introduce examples of microelectronic systems and
identify important circuit “functions” that they employ. We also provide a review of basic
circuit theory to refresh the reader’s memory.

1.1 ELECTRONICS VERSUS MICROELECTRONICS

The general area of electronics began about a century ago and proved instrumental in
the radio and radar communications used during the two world wars. Early systems in-
corporated “vacuum tubes,” amplifying devices that operated with the flow of electrons
between plates in a vacuum chamber. However, the finite lifetime and the large size of
vacuum tubes motivated researchers to seek an electronic device with better properties.

The first transistor was invented in the 1940s and rapidly displaced vacuum tubes. It
exhibited a very long (in principle, infinite) lifetime and occupied a much smaller volume
(e.g., less than 1 cm3 in packaged form) than vacuum tubes did.

But it was not until 1960s that the field of microelectronics, i.e., the science of integrat-
ing many transistors on one chip, began. Early “integrated circuits” (ICs) contained only
a handful of devices, but advances in the technology soon made it possible to dramatically
increase the complexity of “microchips.”

Example

1.1
Today’s microprocessors contain about 100 million transistors in a chip area of approx-
imately 3 cm × 3 cm. (The chip is a few hundred microns thick.) Suppose integrated
circuits were not invented and we attempted to build a processor using 100 million
“discrete” transistors. If each device occupies a volume of 3 mm × 3 mm × 3 mm, de-
termine the minimum volume for the processor. What other issues would arise in such
an implementation?

1
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Solution The minimum volume is given by 27 mm3 × 108, i.e., a cube 1.4 m on each side! Of
course, the wires connecting the transistors would increase the volume substantially.

In addition to occupying a large volume, this discrete processor would be extremely
slow; the signals would need to travel on wires as long as 1.4 m! Furthermore, if each
discrete transistor costs 1 cent and weighs 1 g, each processor unit would be priced at
one million dollars and weigh 100 tons!

Exercise How much power would such a system consume if each transistor dissipates 10 μW?

This book deals mostly with microelectronics while providing sufficient foundation for
general (perhaps discrete) electronic systems as well.

1.2 EXAMPLES OF ELECTRONIC SYSTEMS

At this point, we introduce two examples of microelectronic systems and identify some of
the important building blocks that we should study in basic electronics.

1.2.1 Cellular Telephone

Cellular telephones were developed in the 1980s and rapidly became popular in the 1990s.
Today’s cellphones contain a great deal of sophisticated analog and digital electronics that
lie well beyond the scope of this book. But our objective here is to see how the concepts
described in this book prove relevant to the operation of a cellphone.

Suppose you are speaking with a friend on your cellphone. Your voice is converted to
an electric signal by a microphone and, after some processing, transmitted by the antenna.
The signal produced by your antenna is picked up by your friend’s receiver and, after some
processing, applied to the speaker [Fig. 1.1(a)]. What goes on in these black boxes? Why
are they needed?

Microphone

?

Speaker

Transmitter (TX)

(a) (b)

Receiver (RX)

?

Figure 1.1 (a) Simplified view of a cellphone, (b) further simplification of transmit and receive

paths.

Let us attempt to omit the black boxes and construct the simple system shown in
Fig. 1.1(b). How well does this system work? We make two observations. First, our voice
contains frequencies from 20 Hz to 20 kHz (called the “voice band”). Second, for an an-
tenna to operate efficiently, i.e., to convert most of the electrical signal to electromagnetic
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radiation, its dimension must be a significant fraction (e.g., 25%) of the wavelength. Unfor-
tunately, a frequency range of 20 Hz to 20 kHz translates to a wavelength1 of 1.5 × 107 m
to 1.5 × 104 m, requiring gigantic antennas for each cellphone. Conversely, to obtain a rea-
sonable antenna length, e.g., 5 cm, the wavelength must be around 20 cm and the frequency
around 1.5 GHz.

How do we “convert” the voice band to a gigahertz center frequency? One possible
approach is to multiply the voice signal, x(t), by a sinusoid, A cos(2π fct) [Fig. 1.2(a)]. Since
multiplication in the time domain corresponds to convolution in the frequency domain,
and since the spectrum of the sinusoid consists of two impulses at ±fc, the voice spectrum
is simply shifted (translated) to ±fc [Fig. 1.2(b)]. Thus, if fc = 1 GHz, the output occupies
a bandwidth of 40 kHz centered at 1 GHz. This operation is an example of “amplitude
modulation.”2
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Figure 1.2 (a) Multiplication of a voice signal by a sinusoid, (b) equivalent operation in the

frequency domain.

We therefore postulate that the black box in the transmitter of Fig. 1.1(a) contains
a multiplier,3 as depicted in Fig. 1.3(a). But two other issues arise. First, the cellphone
must deliver a relatively large voltage swing (e.g., 20 Vpp) to the antenna so that the
radiated power can reach across distances of several kilometers, thereby requiring a “power
amplifier” between the multiplier and the antenna. Second, the sinusoid, A cos 2π fct, must
be produced by an “oscillator.” We thus arrive at the transmitter architecture shown in
Fig. 1.3(b).

1Recall that the wavelength is equal to the (light) velocity divided by the frequency.
2Cellphones in fact use other types of modulation to translate the voice band to higher frequencies.
3Also called a “mixer” in high-frequency electronics.
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(a) (b)

Power
Amplifier

A  π f C tcos( 2 ) Oscillator

Figure 1.3 (a) Simple transmitter, (b) more complete transmitter.

Let us now turn our attention to the receive path of the cellphone, beginning with the
simple realization illustrated in Fig. 1.1(b). Unfortunately, this topology fails to operate
with the principle of modulation: if the signal received by the antenna resides around a
gigahertz center frequency, the audio speaker cannot produce meaningful information. In
other words, a means of translating the spectrum back to zero center frequency is necessary.
For example, as depicted in Fig. 1.4(a), multiplication by a sinusoid, A cos(2π fct), translates
the spectrum to left and right by fc, restoring the original voice band. The newly-generated
components at ±2fc can be removed by a low-pass filter. We thus arrive at the receiver
topology shown in Fig. 1.4(b).
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ff C0f C

Output Spectrum
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(b)

Oscillator

Low-Pass
Filter

Oscillator

Low-Pass
Filter

Amplifier
Low-Noise

Amplifier

(c)

Received  Spectrum

Figure 1.4 (a) Translation of modulated signal to zero center frequency, (b) simple receiver,

(b) more complete receiver.

Our receiver design is still incomplete. The signal received by the antenna can be as
low as a few tens of microvolts whereas the speaker may require swings of several tens
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or hundreds of millivolts. That is, the receiver must provide a great deal of amplification
(“gain”) between the antenna and the speaker. Furthermore, since multipliers typically
suffer from a high “noise” and hence corrupt the received signal, a “low-noise amplifier”
must precede the multiplier. The overall architecture is depicted in Fig. 1.4(c).

Today’s cellphones are much more sophisticated than the topologies developed above.
For example, the voice signal in the transmitter and the receiver is applied to a digital signal
processor (DSP) to improve the quality and efficiency of the communication. Nonetheless,
our study reveals some of the fundamental building blocks of cellphones, e.g., amplifiers,
oscillators, and filters, with the last two also utilizing amplification. We therefore devote a
great deal of effort to the analysis and design of amplifiers.

Having seen the necessity of amplifiers, oscillators, and multipliers in both trans-
mit and receive paths of a cellphone, the reader may wonder if “this is old stuff” and
rather trivial compared to the state of the art. Interestingly, these building blocks still re-
main among the most challenging circuits in communication systems. This is because the
design entails critical trade-offs between speed (gigahertz center frequencies), noise, power
dissipation (i.e., battery lifetime), weight, cost (i.e., price of a cellphone), and many
other parameters. In the competitive world of cellphone manufacturing, a given design is
never “good enough” and the engineers are forced to further push the above trade-offs in
each new generation of the product.

1.2.2 Digital Camera

Another consumer product that, by virtue of “going electronic,” has dramatically changed
our habits and routines is the digital camera. With traditional cameras, we received no
immediate feedback on the quality of the picture that was taken, we were very careful in
selecting and shooting scenes to avoid wasting frames, we needed to carry bulky rolls of
film, and we would obtain the final result only in printed form. With digital cameras, on
the other hand, we have resolved these issues and enjoy many other features that only
electronic processing can provide, e.g., transmission of pictures through cellphones or
ability to retouch or alter pictures by computers. In this section, we study the operation of
the digital camera.

The “front end” of the camera must convert light to electricity, a task performed by an
array (matrix) of “pixels.”4 Each pixel consists of an electronic device (a “photodiode”) that
produces a current proportional to the intensity of the light that it receives. As illustrated
in Fig. 1.5(a), this current flows through a capacitance, CL, for a certain period of time,
thereby developing a proportional voltage across it. Each pixel thus provides a voltage
proportional to the “local” light density.

Now consider a camera with, say, 6.25 million pixels arranged in a 2500 × 2500 array
[Fig. 1.5(b)]. How is the output voltage of each pixel sensed and processed? If each pixel
contains its own electronic circuitry, the overall array occupies a very large area, raising the
cost and the power dissipation considerably. We must therefore “time-share” the signal
processing circuits among pixels. To this end, we follow the circuit of Fig. 1.5(a) with a
simple, compact amplifier and a switch (within the pixel) [Fig. 1.5(c)]. Now, we connect
a wire to the outputs of all 2500 pixels in a “column,” turn on only one switch at a time,
and apply the corresponding voltage to the “signal processing” block outside the column.

4The term “pixel” is an abbreviation of “picture cell.”




